Information

Er alle taksonomiske grupper entydigt navngivne?

Er alle taksonomiske grupper entydigt navngivne?



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Det Linnaeanske klassifikationssystem klassificerer og grupperer organismer i taksonomiske grupper: Kingdom, Phylum, Class osv. Det er klart, at en klade på ethvert taksonomisk niveau er unikt bestemt af dens klassificering på dette niveau og alle dens forældre i hierarkiet, f.eks. Kingdom = Bakterie, Fylde = Firmicutes, Klasse = Clostridia identificerer entydigt en gruppe bakterier. Men er denne gruppe også entydigt identificeret ved netop Clostridia? Eller er der situationer, hvor to Phylums begge kan indeholde klasser med samme navn?

Da slægt og art typisk bruges til at identificere organismer, vil jeg antage, at kombinationer af disse i det mindste er unikke. Som @Jam påpegede i kommentarerne, er Species alene ikke nok. Bemærk dog, at jeg er ikke spørger om det binomiale navn for en art - jeg spørger om unikhed blandt højere niveauer af aggregering, såsom klasse, orden og familie.


Der er en del biologiske homonymer (især på slægtsniveau, som du åbenbart ikke spørger om). På det taksonomiske familieniveau viser Interim Register of Marine and Nonmarine Genera (IRMNG) i øjeblikket 100 familienavne, som bruges til to eller flere forskellige taxaer.


International Code of Botanical Nomenclature (ICBN) | Taksonomi

Navn er referencemidlet til alle levende og ikke-levende ting. Enhver genstand, som mennesket kender, får et navn til at beskrive og kommunikere ideer om det. Navnet kan være forskelligt på forskellige sprog og forskellige steder. Kunsten at navngive objektet er kendt som Nomenklatur. Og når det kommer til navngivning af planter, kaldes det Botanisk nomenklatur.

Processen med at navngive planter baseret på internationale regler foreslået af botanikere for at sikre et stabilt og universelt ensartet system kaldes Botanisk nomenklatur.

Fælles navn er det samme for planten i et særligt område eller lokalitet givet af befolkningen i det pågældende område. Sådanne navne varierer fra sted til sted og sprog til sprog. Det er sårbart. I Indien ændres navnet selv med dilekten.

For at overvinde problemerne med almindelige navne foreslog videnskabsmænd navn på en sådan måde, at det er accepteret i verden og bruges internationalt. Men igen, problemet forbliver det samme, dvs. sproget, som ikke er universelt. Så botanikerne blev enige om at fastsætte visse regler og betingelser. Hovedforslaget var, at sproget i navnet skulle være latin.

Det skyldes at:

(a) Sproget er ikke et nationalt sprog i noget land på nuværende tidspunkt.

b) Europæiske sprog kun afledt af latin.

(c) Tidligere europæiske lærde lærte deres fag på latin. Meget af tidligere botanisk litteratur er kun skrevet på latin.

I løbet af 1600 til 1850 AD havde Europa, især Grækenland, domineret videnskabens verden. Sproget var latin, men skriften var romersk.

Binomial nomenklatur:

Linné foreslog for første gang, at ethvert levende væsen har et bionomielt navn, dvs. et navn med to tilnavne. Den ene er generisk og den anden er specifik epitet. Hvis en organisme også har en sort, bliver navnet trinomialt.

Linnaeus foreslog nogle regler for generiske navne på planter i Fundamental Botanica (1736) og Critica Botanica (1737). A.P.de Candolle foreslog for første gang regler for nomenklatur af planter, som vedtages af International Botanical Congress i Paris (1867).

For første gang var det en svensk naturforsker Carolus Linnaeus, der begyndte at navngive planter i 1753 som binomiale navne. Det blev offentliggjort i hans bog “Species plantarum”.

Det generiske navn er altid et substantiv, der viser farve, navn eller adjektiv, f.eks. Sarracenia opkaldt efter en videnskabsmand Michel Sarracin. Art er altid et adjektiv, fx for hvid blomst er det alba., for spiselig er det sativa, sort farve-nigrum osv.

Disse navne bruges ikke altid. Arter kan være et pronomen, f.eks. americana, indica, benghalensis, osv. Det kan være form af et blad (plantekarakter), f.eks. sagittifolia, navnet på en anden videnskabsmand, som planten er dedikeret til, f.eks. Sahnii osv.

Før midten af ​​1700-tallet var plantenavne generelt polynomier bestående af flere ord i en række. Linnaeus foreslog de elementære regler i Philosophia Botanica i 1751.

I 1813 foreslog A.P.de Candolle detaljer om reglerne vedrørende plantenomenklatur i Theorie elementaire de la botanique. Alphonse de Candolle søn af A.P.de Candolle indkaldte efter lang tid en forsamling af botanikere i verden for at præsentere et nyt sæt regler. Candolle indkaldte til den første internationale botaniske kongres i Paris i 1867.

Linneaus til Tourneforte til A.P.de Candolle lavede love om botanisk nomenklatur. I 1867 blev det forelagt Paris botaniske kongres med prioritetsprincipper som grundlæggende kode uden undtagelse.

Tidligere til dette i 1787 lagde Tourneforte 7 love:

jeg. Planter af en slægt skal have samme generiske navn.

ii. Planter af forskellige slægter skal have forskellige generiske navne.

iii. Hvis to planter har samme navn, skal de forvises fra ét sted.

iv. Den, der etablerer en ny slægt, bør give et navn.

v. Polynomier er ugyldige.

vi. Generisk navn baseret på plantekarakter bør tilskyndes.

vii. Teknisk term i stedet for generisk navn er ugyldig.

Den første internationale botaniske kongres blev afholdt i Paris i august 1867. Omkring 150 amerikanske og europæiske botanikere blev inviteret til at lave love for botanisk nomenklatur (Lois de la nomenclature botanique). Lovene blev kaldt Paris-kodeksen, da de blev vedtaget i den franske hovedstad.

Ifølge denne kode var udgangspunktet for hele nomenklaturen fastsat med Linnaeus. Prioritetsreglen blev betragtet som grundlæggende for gyldig udgivelse, forfattercitat var meget vigtigt. Paris-koden har mange iboende defekter. Efter nogle år afveg de amerikanske og britiske botanikere fra forlystelserne og begyndte at følge en ny regel kaldet Kew Rule.

(B) Rochester Code (1892):

N.L. Brittan stod i spidsen for den botaniske kongres i Rochester, New York, USA i 1892. Paris-koden blev ændret og med nye anbefalinger blev den kaldt Rochester-koden.

Nogle vigtige anbefalinger var:

(i) Streng overholdelse af Prioritetsprincipper.

(ii) Navn og udgivelsesdato til fortolkning af prioritet.

(iii) Accept af alternative binomialer fra anvendelse af prioritetsprincipperne, selv i tilfælde af tautonymer.

(iv) Etablering af typekonceptet for at sikre korrekt anvendelse af navne.

Den tredje internationale botaniske kongres blev afholdt i Wien i juni 1905. I denne kongres blev det fastslået, at Linnaeus Species Plantarum (1753) er udgangspunktet for navngivning af karplanter. Nomina genera conservenda, hvor generiske navne med en bred anvendelse vil blive bevaret i forhold til tidligere, men mindre kendte navne. Tautonymer er forbudt, og navnene på nye taxaer ledsages af latinske diagnoser.

Botanikeren foreslåede Rochester Code var utilfredse med Wien Code og nægtede at acceptere den i 1907. De ændrede Rochester Code til American Code. Amerikansk kodeks tilslutter sig ikke princippet om Nomina generica conservenda eller kravet om latinsk diagnose. Det accepterer typekoncept. I American Code kan et binomial ikke bruges igen til en plante på nogen måde, hvis det tidligere har været anvendt til en anden plante.

Fjerde internationale botaniske kongres blev afholdt i Bruxelles i 1910. Denne kode accepterer forskellige udgangspunkter for prioritering af navne på ikke-vaskulære planter. Den anerkender typebegrebet og klassificeringen af ​​Pharseology af Wien-reglerne.

(F) Cambridge Code (1935):

Forskellen mellem Wien-kode og amerikansk kode blev fjernet ved den femte botaniske kongres afholdt i Cambridge (1930).

Bestemmelserne foreslået i denne kodeks er som følger:

(i) Typekonceptet bør følges.

(ii) Der skal gives en liste over Nomina generica conservenda.

(iii) Tautonymer bør kasseres.

(iv) Latinsk diagnose af planter er nødvendig efter 1. januar 1932.

(G) Amsterdam Code (1947):

Sjette internationale botaniske kongres blev afholdt i Amsterdam i 1935. Heri blev der foretaget en større ændring i reglerne, dvs. fra 1. januar 1935 skal navne på nye grupper af nye planter (undtagen bakterier) kun betragtes som gyldige offentliggjorte når de har en latinsk diagnose.

(H) Stockholm Code (1952):

Den 7. internationale botaniske kongres blev afholdt i Stockholm i 1952. For første gang blev ordet “Taxon” introduceret for at betegne enhver taksonomisk gruppe eller enhed.

Den 8. Internationale Botaniske Kongres blev igen afholdt i Paris i juli 1954. Her blev reglen om tvang for latinske diagnoser skrabet ud, og det blev besluttet, at den skulle udgives på engelsk, fransk og tysk. Kodeksens præamble og principper blev adskilt fra reglerne og anbefalingerne. Nomina Generica Conservenda et rejecienda blev ændret og suppleret.

9. Internationale Botaniske Kongres mødtes i Montreal i august 1959, hvor en komité blev nedsat til at undersøge spørgsmålet om bevarelse af efternavne. Nomina familiarum conservanda for Angiospermae blev introduceret. Koden hævdede også, at navngivningen af ​​fossile planter også skulle følge de samme linjer som de seneste.

(K) Edinburgh Code (1966):

På den 10. botaniske kongres i Edinburgh i august 1964 blev udvalgets rapport præsenteret. Ifølge den skal der for familienavne tages udgangspunkt i A.L.de Jussieu’s Genera Plantarum (1789).

Nogle få familiers stavemåde blev ændret, (f.eks. Capparaceae for Capparidaceae og Cannabaceae for Cannabinaceae) på listen over Nomina familiarum Conservenda. En ny komité blev nedsat til at arbejde på udarbejdelsen af ​​en ordliste over tekniske termer, som blev kaldt An Annotated Glossary of Botanical Nomenclature.

11. internationale botaniske kongres mødtes i Seattle i august 1969. Koden blev udgivet i 1972 af F.A. Stafleu. Seattle Code inkluderer de tautonyme betegnelser for taxa mellem slægt og art og derunder. Kode introducerede et nyt ord Autonym, dvs. automatisk oprettede navne.

(M) Leningrad Code (1978):

Den 12. Internationale Botaniske Kongres blev afholdt i Leningrad i juli 1975. Resultaterne blev offentliggjort i 1978. Den omfattede mindre ændringer, f.eks. blev begrebet organslægter elimineret for fossile planter. Koden gælder ikke for bakterier. Principper for automatisk typificering blev udvidet til at omfatte navne på taxa over familierang osv.

13. botaniske kongres blev afholdt i Sydney i august 1981, og resultaterne blev offentliggjort i 1983.

14. Internationale Botaniske Kongres blev afholdt i Berlin 1986, og resultaterne blev offentliggjort i 1988. Nomina Specifica Conservenda blev introduceret i kongressen. Artikel 66 og 67 blev fjernet. I disse to artsnavne blev Triticum aestivum Linn og Lycopersicon esculentum P. Miller bevaret mod prioritetsreglerne, da disse navne blev brugt meget, og man mente, at hvis navnene blev ændret, kunne der opstå forvirring.

15. Internationale Botaniske Kongres mødtes i Yokohama i Japan i 1993. Koden blev oversat til kinesisk, fransk, tysk, italiensk, japansk, russisk og slovakisk.

16. International Botanical Congress blev afholdt i St. Louis, Missouri i 1999. Denne kode er også tilgængelig på mange sprog. Koden er opdelt i regler, artikler og anbefalinger. Der er opstillet regler for at bringe fortidens nomenklatur i orden og give plads til fremtiden.

Anbefalinger omhandler tillægspunkter. Ifølge den skal de navne, der ikke følger de anbefalede, fremover afvises. Regler og anbefalinger gælder for alle levende og fossile organismer og svampe, men inkluderer ikke bakterier. For Bacteria International Code of Nomenclature of Bacteria (ICNB) blev foreslået separat.

I øjeblikket er reglerne og anbefalingerne i St. Louis-koden, som blev foreslået af Greuter i 1999, i praksis.

Den syttende internationale botaniske kongres mødtes i Wien i 2005, men dens kode er endnu ikke offentliggjort.

Principper for International Code of Botanical Nomenclature, (ICBN):

I. Botanisk nomenklatur er uafhængig af zoologisk nomenklatur. Koden gælder ligeligt for navne på taksonomiske grupper behandlet som planter, uanset om disse grupper oprindeligt blev behandlet på denne måde (Planter omfatter ikke bakterier).

II. Anvendelse af navne på taksonomiske grupper bestemmes ved hjælp af nomenklaturtyper.

III. Nomenklaturen for en taksonomisk gruppe er baseret på udgivelsesprioritet.

IV. Hver taksonomisk gruppe med en bestemt omskrift, position og rute kan kun bære ét korrekt navn, det tidligste, der er i overensstemmelse med reglerne, undtagen i specifikke tilfælde.

V. Videnskabelige navne på taksonomiske grupper behandles som latinske uanset deres afledning.

VI. Reglerne for nomenklatur har tilbagevirkende kraft, medmindre de er udtrykkeligt begrænset.

Principperne blev fastlagt i 1983.

Præamblen til ICBN 1983:

1. Botanik kræver et præcist og enkelt nomenklatursystem, der anvendes af botanikere i alle lande, og som på den ene side beskæftiger sig med de termer, der angiver rækken af ​​taksonomiske grupper eller enheder, og på den anden side de videnskabelige navne, der anvendes. til de enkelte taksonomiske grupper af planter.

Formålet med at give et navn til en taksonomisk gruppe er ikke at angive dens karakter eller historie, men at give et middel til at henvise til den og at angive dens taksonomiske rang. Koden har til formål at tilvejebringe en stabil metode til at navngive taksonomiske grupper, undgå og afvise brugen af ​​navne, som kan forårsage fejl eller tvetydighed eller kaste videnskaben i forvirring. Det undgår ubrugelig oprettelse af navne.

2. Principperne danner grundlaget for systemet for botanisk nomenklatur.

3. De nærmere bestemmelser er opdelt i regler og anbefalinger. Der tilføjes eksempler til reglerne og anbefalingerne for at illustrere dem.

4. Formålet med reglerne er at bringe fortidens nomenklatur i orden og sørge for fremtidens, navne, der strider mod en regel, kan ikke opretholdes.

5. Anbefalingerne omhandler subsidiære punkter, der har til formål at skabe større ensartethed og klarhed, især i den fremtidige nomenklatur, navne, der strider mod en anbefaling, kan derfor ikke afvises, men de er ikke eksempler, der skal følges.

6. Bestemmelserne, der regulerer ændringen af ​​denne kodeks i forhold til dens sidste beslutninger.

7. Reglerne og anbefalingerne gælder for alle organismer, der behandles som planter (undtagen bakterier), uanset om de er fossile eller ikke-fossile. Bakteriers nomenklatur er styret af ICNB. Særlige foranstaltninger er nødvendige for visse grupper af planter. Den internationale kodeks for nomenklatur for dyrkede planter (1980) blev vedtaget af Den Internationale Kommission for Nomenklatur for dyrkede planter. Bestemmelserne for navnene på hybrider fremgår af tillæg I.

8. Den eneste rigtige grund til at ændre et navn er enten et mere dybtgående kendskab til fakta, der er resultatet af passende taksonomiske undersøgelser, eller nødvendigheden af ​​at opgive nomenklatur, der er i strid med reglerne.

9. I mangel af en relevant regel, eller hvor konsekvenserne af regler er tvivlsomme, følges fast skik.

10. Denne udgave af koden erstatter alle tidligere udgaver.

Afdeling III. Styring af kodekset:

1. Koden kan kun ændres ved handling af et plenarmøde i en international botanisk kongres på grundlag af en resolution, der er fremsat af kongressens nomenklatursektion.

2. Permanente nomenklaturkomitéer oprettes i regi af International Association for Plant Taxonomy. Medlemmerne vælges af en international botanisk kongres. Udvalgene har beføjelse til at adskille og nedsætte underudvalg.

3. Bureau of Nomenclature of International Botanical Congress, dets officerer er:

c) Generalordføreren og

4. Afstemningen om nomenklaturforslag er af to slags:

(a) Foreløbig vejledende brevstemme

(b) Endelig og bindende afstemning ved nomenklatursektionen af ​​Den Internationale Botaniske Kongres.

Nogle vigtige regler og anbefalinger:

1. Alle de planter, der tilhører én slægt, skal være designet med det generiske kildenavn (Regel 213).

2. Alle de planter, der tilhører forskellige slægter, skal betegnes med forskellige generiske navne (Regel 214)

3. Den, der etablerer en ny slægt, bør give den et navn (Regel 218).

4. De generiske navne er bedst, som viser planters væsentlige karakteristika eller deres udseende (Regel 240).

5. Generiske navne på halvanden fod lange eller svære at udtale eller ubehagelige skal undgås (Regel 249).

6. Det specifikke navn skal adskille en plante fra alle dens slægtninge (Regel 257).

7. Størrelsen skelner ikke mellem arter (Regel 260).

8. Det oprindelige plantested giver ingen specifik forskel (Regel 264).

9. Et generisk navn skal anvendes på hver art (Regel 284).

10. Det specifikke navn skal altid følge det generiske navn (Regel 285).

I overensstemmelse med ICBN ændres nogle traditionelle navne på familierne til deres alternative navne som:

Compositae er nu kendt som Asterceae.

Gramineae er nu kendt som Poaceae.

Labiatae kaldes nu som Lamiaceae.

Palmae kaldes nu Arecaceae.

Umbelliferae er nu kendt som Apiaceae.

En unik undtagelse til artikel 52 i koden er, at navnet Leguminosae kun er sanktioneret, så længe det omfatter alle tre underfamilier Papilionoideae, Caesalpinoideae og Mimosoideae. Hvis underfamilierne opgraderes til familiestatus, skal Papilionaceae kaldes Fabaceae.

Forfattercitat:

Et navn kan ikke være komplet uden forfatterens navn. Forfatterens navn er forkortet, f.eks. er Linneaus forkortet som Linn eller L, Benthm som Benth Hooker som Hook, Roxburgh som Roxb, Lamark som Lamk osv.

I henhold til artikel 46 skal angivelserne af navnet på en taxon være nøjagtige og fuldstændige. Det er nødvendigt at citere navnet på den forfatter, der først gyldigt har offentliggjort navnet. Hvis forfatterens navn er for langt, skal det forkortes. f.eks. Hibisus L., Indigofera grandulosa var. Syskessi Baker, Solarium nigrum Linn mm.

I henhold til artikel 49, når en slægt eller taxon af lavere rang ændres i øvre rang, men bevarer sit navn eller tilnavn, skal den forfatter, der først udgav dette som et legitimt navn eller epitet, citeres i parentes efterfulgt af forfatterens navn. gennemførte vekslen, f.eks. Citrus auranium var. grandis L, når den hæves til rang af art, bliver den Citrus grandis (L) Obseck. Her er L den første forfatter og Osbeck ændrede den.

På samme måde, når en underafdeling af en slægt eller en art overføres til en anden slægt eller placeres under et andet generisk navn (artikel 54 og 55), vil det blive skrevet som:

(i) Saponaria sektion vaccaria DC ved overførsel til Gypsophila, det becju.es Gypsophila sec. vaccaria (DC) Godr.

(ii) Limonia aurantifolia Christm, når den overføres til Citrus bliver den Citrus aurantifolia (Christm) Swingle.

I tilfælde af infraspecifikke ændringer er det, Alysicapus nummularifolius DC når det reduceres til sort bliver det til Alysicarpus viginalis var. nummularifolius (DC) Bager.

Navnene på to forfattere er forbundet af ex. når den første forfatter foreslog et navn, men kun gyldigt blev offentliggjort af anden forfatter, opfyldte den første forfatter ikke alle kravene i koden, f.eks.

Cerasus cornuta Væg ex. Royle. Når to eller flere forfattere udgiver en ny art, er deres navne forbundet med et, f.eks. Delphinium viscosum Hook.F. et Thomson. Når den første forfatter udgiver en ny art eller et nyt navn i en publikation af en anden forfatter, bruges i f.eks. Carex kashmirensis Clarke i Hook. F, det betyder, at Clarke har offentliggjort den nye art i Hooker’s Flora of British India.

Navnene på to forfattere er forbundet ved hjælp af emend (emendavit) eller person, der foretager ændring eller rettelse i diagnosen eller omskrivningen af ​​en taxon uden at ændre typen, f.eks. Phyllanthus Linn, emend. Mull.

Når et navn allerede var foreslået, men det er før 1753, dvs. starten på binomialsystemet, vil forfatterens navn blive sat i parentes ([ ]), fx Lupinus [Tourne] Linn, her foreslog Tournefort navnet i 1719 , altså før 1753 (Arten Plantarum).

I citationen af ​​infraspecifik taxon kaldes begge myndigheder som Acasia nelotica (Linn) Del. ssp indica (Benth). I tilfælde af autonym bærer det infraspecifikke epitet ikke forfatterens navn, da det er baseret på samme type som arten, f.eks. Acacia nelotica (Linn.) Del. ssp nelotica.

Offentliggørelse af navne:

Navnet på en Taxon bør opfylde visse krav, før det faktisk offentliggøres, f.eks.

(a) sp. nov (species nova) for en ny art

(b) Kam, nov (kombination nova) for ændring af tilnavnet til basionym Navnet på den oprindelige forfatter skal opbevares i parentes.

(c) nom. nov (Nomen novum), når det oprindelige navn er helt udskiftet.

Navnet på New Taxa skal have en latinsk diagnose, dvs. oversættelse af alle funktioner til latinsk sprog.

Holotype skal udpeges. Navnet på ny Taxon er kun gyldigt, når navnets type er nævnt efter 1. januar 1990. Navnet på den taxon, hvis type er et eksemplar eller upubliceret illustration, herbariet eller institutionen, hvor typen er konserveret, skal angives.

(4) Efter 1. januar 1996 skulle navnet på det nye fossile takson være ledsaget af en latinsk eller engelsk beskrivelse af karakteren.

Artikel 32, 1-2 eller Tokyo Code (ICBN) ændres, da nye navne på planter og svampe skal registreres for at blive gyldigt offentliggjort efter 1. januar 2000.

Afvisning af navne:

Reglerne for afvisning af navne er:

(i) Nomen nudunm (nom. nud):

Navn uden beskrivelse, uden typificering og latinsk diagnose etc. afvises.

Botanisk nomenklatur tillader ikke tautonym (gentagelse af generisk navn), f.eks. Malus malus. Gentagelse af specifik epitet i infraspecifik epitet udgør ikke tautonym.

Hvis et allerede eksisterende navn igen gives til en anden taxa, afvises det senere homonym.

(iv) Nomen ambiguum (nom. ambig):

Navnet afvises, hvis det bruges i forskellig betydning af forskellige forfattere.

(v) Nomen confusum (nom. confus):

Navnet bør ikke være forvirrende.

(vi) Nomen dubium (non. dub):

Tvivlsomt navn, dvs. med usikre ansøgninger, afvises også.

Navne på forskellige taksonomiske grupper er baseret på typemetoden.

Principperne og artiklerne i ICBN bestemmer, at alle taksonomiske grupper vil være baseret på nomenklaturtyper, hvilket betyder, at alle navne er permanent knyttet til et eller andet taxon eller eksemplar, der er udpeget som type. For arter (og infraspecifikke taxa) er typen et eksemplar eller i nogle tilfælde kun en illustration. Navnet på den første forfatter skal vedlægges.

Navnet på taxaen over artens niveau, dvs. sektion, underslægt, slægt, stamme og familie osv., er baseret på navnet på det umiddelbart næste lavere taxon, som gruppen oprindeligt var baseret på, dvs. Lamiaceae var baseret på slægten Lamium. Orchidaceae var baseret på slægten Orchis osv.

Når en ny art beskrives, har forfatteren af ​​nye arter et eller flere eksemplarer med karakterer, der er karakteristiske nok til at blive adskilt i nye arter.

Forskellige typer:

Enkelt eksemplar, kan være en hel plante eller en del af den, som navnet på taxonen er permanent knyttet til, er kendt som holotype.

Fragmenter fra den samme plante, som holotypen er lavet af, eller planter med samme feltnummer er isotyper.

En anden prøve end holotype og isotype kaldes paratype. Prøven kan have et andet feltnummer, da det er indsamlet fra forskellige lokaliteter af forskellige samlere.

Det eksemplar, som er grundlaget for en ny taxon, når ingen holotype er udpeget af forfatteren, er kendt som syntype. Hvis forfatteren studerer samling fra forskellige lokaliteter og af forskellige samlere og beslutter sig for at etablere en ny art, mærker dem alle som typer, bliver alle disse prøver syntype.

Det er en type valgt til at fungere som Holotype, når enten en tidligere udpeget holotype gik tabt eller ødelagt, eller Holotype aldrig blev udpeget, og fra Isotype, Paratype eller Syntype vælges et eksemplar af en specialist til at fungere som typen.

Hvis Holotype, Isotype, Paratype eller Syntype går tabt eller ikke er tilgængelig, vælges en Neotype blandt andre prøver til at fungere som Type. Nogle taksonomer kalder det standardprøve.

Når intet originalt typemateriale er tilgængeligt, og et eksemplar er indsamlet fra typelokalitet, vælges det til at fungere som type, kaldes det Topytype.

Prøve er udvalgt til at tjene som en fortolkende type, når holotypen, lektotypen, neotypen osv. ikke effektivt kunne identificeres for at navngive taxonet, det kaldes epitype.

Prioriteringsprincipper:

Prioritetsprincipper handler om udvælgelsen af ​​et enkelt korrekt navn på den taksonomiske gruppe. Kun legitime navne bør bibeholdes, mens de illegitime navne bør afvises.

I henhold til artikel 11-12 er regler for prioritet:

(i) Hver familie eller taxon af lavere rang med en bestemt omskrift, stilling og rang kan kun bære ét korrekt navn (art. 11).

(ii) For enhver taxon fra familie til slægt inklusive, er det korrekte navn det tidligste legitime, gyldigt offentliggjort med samme rang (art. 11).

(iii) Et navn på en taxon har ingen status under denne kode, medmindre det er et gyldigt offentliggjort (art. 12).

(iv) Anvendelsen af ​​både bevarede og afviste navne er bestemt af nomenklaturtypen (art. 14).

(v) “Når et navn, der er foreslået til bevarelse, er blevet foreløbigt godkendt af den generelle komité, er botanikere bemyndiget til at beholde det i afventning af afgørelsen fra en senere international botanisk kongres”.

Gyldig offentliggørelse af navne anses normalt for at begynde i maj 1753, datoen for udgivelsen af ​​Species plantarum vol. I af Linneaus.

Med mange navne på en taxon vil det gyldige være det tidligste navn, der anses for at være korrekt navn. Prioritetsreglen giver stabilitet til hans navn.

Princippet om, at anciennitet er fastsat på datoen for gyldig offentliggørelse, er kendt som Prioritetsprincippet.

Nymphea nouchali Burm F. 1768 N. Pubescence Willd 1799 og N.torus Hook T 1872 er navne på samme art, men hvis prioritetsreglen anvendes, er fornavnet det korrekte navn, og de to andre er synonymer.

Loureiro beskrev en plante og kaldte den Physkium nataus i 1790. A.L.de Jussieu overførte den til slægten Vallisneria i 1828. Han gav i stedet for nutans det specifikke navn som V. physkium. Det er et overflødigt navn. Graebner (1912) beskrev de samme planter som V.gigantee og Miki (1934) navngivet som V.asitica. Harg, mens han studerede asiatiske arter, bekræftede, at alle disse navne er synonyme.

Der er ingen legitim kombination baseret på Physikium natans (Leru) eksisterede. Han lavede V.natans Hara i 1974. Det korrekte navn på eksemplaret er nu det nyere navn, men det er baseret på det tidligste basionym, andre vil være synonymer. V.gigantea og V.asiatica vil blive kendt som nomenklaturelle synonymer eller homotypiske synonymer. V.gigantea og V.asiatica er navnene baseret på separate typer. Sådanne synonymer er kendt som taksonomiske synonymer eller heterotypiske synonymer.

Begrænsninger af prioritetsprincipper:

Prioritetsprincipper starter med arten Plantarum af Linnaeus offentliggjort den 1-5-1753.

2. Kun begrænset til familierækker:

Dette princip gælder ikke for familierang.

3. Det rettede navn bør ikke være uden for rangen. Kun når et korrekt navn i taxonet ikke er tilgængeligt, er en kombination med anden rang tilladt.


Nogle få dårlige videnskabsmænd truer med at vælte taksonomi

Forestil dig, om du vil, at blive bidt af en afrikansk spyttekobra. Disse krybdyr er dårlige nyheder af flere grunde: For det første spytter de og skyder en potent cocktail af nervegifte direkte ind i deres ofres øjne. Men de hugger også ned og bruger deres hugtænder til at give et grimt bid, der kan føre til åndedrætssvigt, lammelse og lejlighedsvis endda død.

Før du skynder dig til hospitalet på jagt efter antivenin, får du lyst til at se præcis, hvilken slags slange du har med at gøre. Men resultaterne er forvirrende. Ifølge den officielle optegnelse over artsnavne, styret af den internationale kommission for zoologisk nomenklatur (ICZN), tilhører slangen slægten Spracklandus. Hvad du ikke ved er, at næsten ingen taksonomer bruger det navn. I stedet bruger de fleste forskere det uofficielle navn, der dukker op i Wikipedia og de fleste videnskabelige tidsskriftsartikler: Afronaja.

Det lyder måske som semantik. Men for dig kan det betyde forskellen mellem liv og død. “Hvis du går ind [på hospitalet] og siger, at slangen, der bed dig, kaldes Spracklandus, får du måske ikke det rigtige antivenin,”, siger Scott Thomson, en herpetolog og taksonom ved Brasiliens zoologiske museum ved University of São Paulo. Når alt kommer til alt, “lægen er ikke en herpetolog … han er en læge, der forsøger at redde dit liv.”

Faktisk, Spracklandus er centrum for en heftig debat inden for taksonomiverdenen, som kunne være med til at bestemme fremtiden for et helt videnskabeligt felt. Og Raymond Hoser, den australske forsker, der gav Spracklandus dets officielle navn, er en af ​​frontfigurerne i den debat.

Med tallene er Hoser en taksonomisk maven. Alene mellem 2000 og 2012 navngav Hoser tre fjerdedele af alle nye slægter og underslægter af slanger samlet set, han har navngivet over 800 taxa, inklusive snesevis af slanger og firben. Men fremtrædende taksonomer og andre herpetologer, inklusive flere interviewede til dette stykke, siger, at disse tal er vildledende.

Ifølge dem er Hoser slet ikke en produktiv videnskabsmand. Det, han virkelig mestrede, er en meget specifik form for videnskabelig "forbrydelse": taksonomisk hærværk.

For at studere livet på Jorden har du brug for et system. Vores er Linnaean taksonomi, modellen startet af den svenske biolog Carl Linnaeus i 1735. Linnaeus' todelte artsnavne, ofte latinsk baserede, består af både et slægtsnavn og et artsnavn, dvs. Homo sapiens. Som et biblioteks Dewey-decimalsystem for bøger, har dette biologiske klassifikationssystem gjort det muligt for videnskabsmænd over hele verden at studere organismer uden forvirring eller overlap i næsten 300 år.

Men som ethvert bibliotek er taksonomi kun så god som dets bibliotekarer—, og nu truer nogle få useriøse taksonomer med at afsløre fejlene i systemet. nævne snesevis af nye taxa uden at fremlægge tilstrækkelig dokumentation for deres fund. Ligesom plagiatører forsøger at udgive andres arbejde som deres eget, bruger disse herlighedssøgende videnskabsmænd andres originale forskning for at retfærdiggøre deres såkaldte "opdagelser".”

“Det er uetisk navneskabelse baseret på andre menneskers arbejde,” siger Mark Scherz, en herpetolog, der for nylig gav navn til en ny art af gekko i fiskeskæl. “Det er den mangel på etisk sensibilitet, der skaber det problem.”

Målet med taksonomisk hærværk er ofte selvforhøjelse. Selv i et så uglamorøst felt er der prestige og belønning—og med dem fristelsen til at opføre sig forkert. “Hvis du navngiver en ny art, er der noget berygtet over den,” siger Thomson. “You get these people that decide that they just want to name everything, so they can go down in history as having named hundreds and hundreds of species.”

Taxonomic vandalism isn’t a new problem. “Decisions about how to partition life are as much a concern of politics and ethics as of biology,” two Australian biologists wrote in a June editorial in the journal Nature on how taxonomy’s lack of oversight threatens conservationThey argued that the field needs a new system, by which the rules that govern species names are legally enforceable: “We contend that the scientific community’s failure to govern taxonomy … damages the credibility of science and is expensive to society."

But the problem may be getting worse, thanks to the advent of online publishing and loopholes in the species naming code. With vandals at large, some researchers are less inclined to publish or present their work publicly for fear of being scooped, taxonomists told me. “Now there’s a hesitation to present our data publically, and that’s how scientists communicate,” Thomson says. “The problem that causes is that you don’t know who is working on what, and then the scientists start stepping on each other’s toes.”

Smithsonian.com spoke with some of these alleged vandals, and the scientists trying to stop them and save this scientific system.

In 2012, Hoser dubbed this species Oopholis adelynhoserae. According to other taxonomists, it is actually the New Guinea crocodile, Crocodylus novaeguineae. (Wikimedia Commons)

If you’re a scientist who wants to name a newly discovered form of life, your first step is to gather two to three lines of evidence—from DNA and morphology, for example—that prove that you’re dealing with something new to science. Then you have to obtain a holotype, or an individual of the species that will serve as an identifier for future researchers. Next you’ll write up your paper, in which you describe your discovery and name it according to taxonomic naming conventions.

Finally, you send your paper off to a scientific journal for publication. If you are the first to publish, the name you’ve chosen is cemented into the taxonomic record. But that last step—publication—isn’t easy. Or at least, it isn’t supposed to be. In theory, the evidence you present must adhere to the high scientific and ethical benchmark of peer-review. Publication can take months, or even years.

However, there’s a loophole. The rules for naming a new animal taxon are governed by the ICZN, while the International Association for Plant Taxonomy (IAPT) governs plants. And while the ICZN requires that names be published, as defined by the commission’s official Code, “publishing” doesn’t actually require peer-review.

That definition leaves room for what few would call science: self-publishing. “You can print something in your basement and publish it and everyone in the world that follows the Code is bound to accept whatever it is you published, regardless of how you did so,” Doug Yanega, a Commissioner at the ICZN, told me. “No other field of science, other than taxonomy, is subject to allowing people to self-publish.”

Thomson agrees. “It’s just become too easy to publish,” he says.

Hvorfor ikke? When the Code was written, the technologies that allow for self-publishing simply didn’t exist. “The Code isn’t written under the assumption that people would deliberately try to deceive others,” Yanega says. But then came the advance of desktop computing and printing, and with it, the potential for deception.

Moreover, the ICZN has no actual legal recourse against those who generate names using illegitimate or unethical science. That’s because the Code, which was last updated in 1999, was written to maintain academic freedom, Yanega says. As the Code reads: “nomenclatural rules are tools that are designed to provide the maximum stability compatible with taxonomic freedom.”

Vandals have zeroed in on the self-publishing loophole with great success. Yanega pointed to Trevor Hawkeswood, an Australia-based entomologist accused by some taxonomists of churning out species names that lack scientific merit.  Hawkeswood publishes work in his own journal, Calodema, which he started in 2006 as editor and main contributor. 

“He has his own journal with himself as the editor, publisher, and chief author,” Yanega says. “This is supposed to be science, but it’s a pile of publications that have no scientific merit.” (In response to questions about the legitimacy of his journal, Hawkeswood delivered a string of expletives directed towards his critics, and contended that Calodema has “heaps of merit.”)

Raymond Hoser also owns his own journal, the Australasian Journal of Herpetology (AJH). AJH has faced similar criticism since it was launched in 2009, despite claims by Hoser that the journal is peer-reviewed. “Although the AJH masquerades as a scientific journal, it is perhaps better described as a printed ‘blog’ because it lacks many of the hallmarks of formal scientific communication, and includes much irrelevant information,” wrote Hinrich Kaiser, a researcher at Victor Valley College in California, and colleagues in the peer-reviewed journal Herpetological Review.

Publications like these let bad science through, taxonomists say. According to them, vandals churn out names of so-called “new species” in their journals, often when the scientific evidence to support a discovery is lacking. And if the names are properly constructed and accompanied by characteristics that are “purported” to distinguish the species, they become valid under the Code. “As long as you create a name, state intention that the name is new, and provide just the vaguest description of a species, the name is valid,” Scherz says.

Hoser, for his part, doesn’t see a problem. “People complain that we name too much stuff,” he told me. “But that’s bullsh*t. There’s a lot out there.”

Like a phylogenetic tree, a cladogram illuminates relationships between groups of animals. (Wikimedia Commons)

Taxonomic vandalism usually isn't subtle. Oftentimes, vandals will explicitly steal others’ science to support their so-called "discovery," taxonomists told me. "They don’t do any of the research, they don’t own any of the research,” as Thomson puts it. One of the most common lines of evidence they steal is what's known as the phylogenetic tree. 

Phylogenetic trees, not unlike family trees, reveal how different animal specimens are related to each other based on their genetics specimens that are genetically similar are grouped together. In some cases, those groupings represent species that have yet to be named, which scientists call “candidate species.” Researchers commonly publish phylogenetic trees on the road to discovering a new species, and then use those published trees as evidence for that species’ uniqueness.

However, gathering enough evidence to make a discovery can take months or even years. Meanwhile, culprits like Hoser swoop in. Once the tree is publically available, vandals use it as evidence to justify a “discovery,” which they quickly publish in their personal journals. “Vandals go through literature and comb through phylogenetic trees, find a group in the phylogenetic tree that could be named, and quickly give it a name,” Scherz said.

It’s difficult to pinpoint the total number of species named by vandals, but Thomson estimates there are tens of thousands. Hoser readily admits that he has used this approach to name tens—if not hundreds—of taxa. “I managed to name about 100 genera [of snakes] by basically looking at phylogenetic trees,” Hoser said. Among them was the African spitting cobra, Spracklandus.

Another approach is based on a theory called “allopatric speciation,” or the evolution of new species through geographic isolation. 

The theory states that when animal populations are physically separated without opportunities to interbreed, they can grow genetically distinct. Over time, the populations can become separate species—meaning, in simplistic terms, that they can’t successfully reproduce with each other. This is a widely-accepted theory, but not proof in itself. Without DNA samples and a detailed examination of several individuals from each population, it’s not so much a discovery as it is a clue.

Taxonomic vandals have been known to take full advantage of this theory to make “discoveries,” says Kaiser. To find and name new species, they will search for geographic barriers that cut through the range of an existing species, such as rivers or mountains. If the species populations look different on either side of the barrier—on one side they’re red and on the other side they’re blue, for example—vandals will automatically declare them two separate species.

“Taxonomic vandals are saying that these are two separate…[species]…but they really have no scientific underpinning of that statement,” Kaiser said of this approach. Hoser, Kaiser writes, uses both existing phylogenetic trees and allopatric speciation to justify generating "new" species names.

For his part, Hoser maintains that the distinctions are often self-explanatory. “Sometimes it's so bloody self-evident that you don't need to resort to molecular-f***ing-genetics and DNA to work out the difference,” Hoser said. “It's like working out the difference between an elephant and a hippopotamus—they’re obviously different animals. You don’t need to be a Rhodes Scholar to figure out the difference.”

His colleagues disagree. “He puts the name on straight away without any evidence,” says Thomson of Hoser. “It’s like throwing darts at a dart board with his eyes closed, and every now and then he hits a bull’s-eye.”

In 2009, Hoser petitioned the ICZN to redefine the lethal Western Diamondback rattlesnake (Crotalus atrox) as the holotype for a new genus he proposed naming "Hoserea" after his wife. He was declined. (Rolf Nussbaumer Photography / Alamy)

While the ICZN doesn’t have the power to regulate these problems, that doesn’t mean individual taxonomists are sitting quietly by.

The scientific community often opts collectively to reject the names that vandals ascribe, even if they’re technically Code-compliant, according to several taxonomists I spoke with. Strictly speaking, this is against the rules of the Code—the names are official, after all. But according to Wolfgang Wüster, a herpetologist at Bangor University, many herpetologists “are scientists first and nomenclaturists second.”

Kaiser, Wüster and other taxonomists have been leading the fight to stamp out vandalism within herpetology. “The scientific community currently appears almost unanimous in their approach not to use Hoser’s nomenclature,” Wolfgang Denzer, a herpetologist, wrote in a critical review of Hoser’s conquests in the open access, peer-reviewed journal Bonn zoological Bulletin.

As stated, many herpetologists refuse to use the name Spracklandus, a name they say is a product of vandalism. Instead they use Afronaja, the name coined by scientists who first published data, which, taxonomists say, Hoser scooped. Unfortunately, this results in what taxonomists call “parallel nomenclature”: when a single taxon is known by more than one name.

Parallel nomenclature is exactly what the Code was intended to prevent.

Og med god grund. Confusion created by parallel nomenclature complicates any process that depends on unambiguous species names, such as assigning conservation statuses like “Endangered” or “Threatened.” As the authors write in the Natur editorial, how a species is classified by taxonomists influences how threatened it appears, and thus how much conservation funding it’s likely to receive. As the authors of the editorial write: “Vagueness is not compatible with conservation.”

Parallel nomenclature could also make it more difficult to acquire an export permit for research, taxonomists say. “If you are in one country that uses vandalistic names and try to export an animal, your import and export permits won’t match, which means animals get held up when you cross borders,” Thomson said.

These kind of detrimental consequences—for science and conservation—are why some scientists are calling for a more dramatic solution: revising the Code itself.

A table of "amphibia" from Carl Linnaeus' Systema Naturae. (Carl Linnaeus / Wikimedia Commons)

The boycott against Hoser’s names remains widespread and “undeniably effective,” Yanega says. So effective, in fact, that Hoser submitted a request to the ICZN in 2013, in which he asked the commission to publicly confirm the validity of the name Spracklandus—a name that is already valid by the rule of the Code.

“He was upset by the boycott,” Yanega says, adding that Hoser was seeking validation from the commission.

“The Commission is asked to rule on these seemingly routine matters because widely promulgated recommendations by some herpetologists to use … Afronaja … instead has resulted in instability in nomenclature,” the case reads.

But the case isn’t just about one genus, one name, and one vandal, say the taxonomists I spoke to. “It’s a test of not only which names are going to stand, but also a test—which is how I see it and my colleagues see it—of scientific integrity,” Kaiser says.

It’s still unclear which way the commission will rule, Yanega says. “It depends on how objective we have to be and how well-phrased the question is before us.” If the question, which is still formulating through internal debate, is whether Hoser’s name is destabilizing taxonomy—that is, phrased as a technical, but not ethical, question—the commission will likely rule against him, Yanega adds.

But it’s possible that the scales may tip the other way, Yanega says. And if they do tip in favor of Hoserherpetologists I spoke to said that they would have no choice but to abandon the Code altogether. “The rumors among herpetology are that if the Commission rules in Hoser’s favor, then it’s over,” Sherz said. “Then we drop the Code and make our own, because it just can’t work like this.”

The authors of the Natur editorial offer up a solution: move the code under a different purview. Specifically, they suggest that the International Union of Biological Sciences (IUBS)—the biology branch of the International Council for Sciences—should “take decisive leadership” and start a taxonomic commission. The commission, they propose, would establish hardline rules for delineating new species and take charge in reviewing taxonomic papers for compliance. This process, they say, would result in the first ever standardized global species lists.

"In our view, many taxonomists would welcome such a governance structure,” the authors write. “Reducing the time spent dealing with different species concepts would probably make the task of describing and cataloguing biodiversity more efficient.”

But, barring that, a revision of the Code is unlikely to happen anytime soon, Yanega told me. Because the ICZN strives to act in everyone’s best interest, any change requires consensus across the taxonomic community. “Everything is done with some level of cooperation and consensus,” he said. “We would indeed be willing to change the rules, if we could ever get the community to come to a consensus as to how the rules should be changed.” So far, that hasn’t happened.

Part of the problem is that most branches of taxonomy aren’t impacted as heavily as herpetology, where many prominent vandals operate. That’s because herpetology is home to thousands of undescribed species, so there’s plenty of low hanging fruit for vandals to pick. Moreover, “herpetology maybe does attract more interesting characters than other branches of science,” says Wüster. “Reptiles are kind of pariahs of the animal world”—as are some of the people who study them, it would appear.

“Other disciplines within taxonomy don’t have the same sorts of problems with these same sorts of people,” Yanega says. If scientists who study birds and fish, for instance, are less exposed to the problem of vandalism, they’re not going to support a stricter Code, he adds: “To them, it sounds like you're being dictatorial or practicing censorship.”

But, at least to the herpetologists I spoke to, that’s a price that researchers should be willing to pay for good science. “This is a compromise where we might have to give up some academic freedom for the sake of the community,” Kaiser says. “This crime needs to be weeded out.”


Blowing Up the Cambrian Explosion

In reality, phyla are defined by more than body plans. They’re often considered to be distinctive groups of organisms that arose within a particular stretch of 5 to 20 million years during the early Cambrian Period, which started more than 500 million years ago. The sudden burst of diversity during this time is often referred to as the “Cambrian explosion,” and as James Valentine, professor emeritus of biology at the University of California, Berkeley, once explained, it’s thought to have occurred because the lack of animal biodiversity up to that point was unique in the history of life. Some say that abrupt climatological or geological shifts were important, too — but whatever the exact trigger, the way that evolution altered species back then was seemingly different from the way it alters them now.

But more recent data have countered this idea that there was something special about the diversification of life a half-billion years ago. The discovery of new fossils that sit on the “stems” of currently recognized phyla show that the so-called body plans actually arose stepwise over time. Their apparent morphological distance from one another could therefore be purely an artifact of fossilization and extinction, without being representative of unique biological processes. Some biologists, like the paleogenomics researcher David A. Gold at the University of California, Davis, have proposed that what happened in the early Cambrian was less an “explosion” than the ignition of a “long fuse” of biological innovation. Others argue for a series of pulses of diversification.

One thing is clear: The phyla didn’t all pop into existence at the same time. Cnidarians, for example, had already split into the lineages we recognize as classes before echinoderms came onto the scene. As a 2019 paper in Nature Ecology and Evolution pointed out, there is more divergence between those cnidarian classes — which include the Scyphozoa (jellyfish), the Cubozoa (box jellies), the Anthozoa (sea anemones, corals, sea pens), and the highly diverse Hydrozoa — than between humans and sea urchins.


Centrale punkter

  • Categories within taxonomic classification are arranged in increasing specificity.
  • The most general category in taxonomic classification is domain, which is the point of origin for all species all species belong to one of these domains: Bacteria, Archaea, and Eukarya.
  • Within each of the three domains, we find kingdoms, the second category within taxonomic classification, followed by subsequent categories that include phylum, class, order, family, genus, and species.
  • At each classification category, organisms become more similar because they are more closely related.
  • As scientific technology advances, changes to the taxonomic classification of many species must be altered as inaccuracies in classifications are discovered and corrected.

Classification of Algae

A generally agreed classification of algae recognizes nine broad taxonomic groups, called Divisions. These are Chlorophycophyta, Xanthophycophyta, Bacillariophycophyta, Phaeophycophyta, Rhodophycophyta, Chrysophycophyta, Euglenophycophyta, Cryptophycophyta and Pyrrophycophyta.

Among these, the members of the first five Divisions are distinctly plant-like organisms, but the others, particularly the flagellates, have some animal-like characters. For example, Euglena is included both in algae and in the protozoa under the class Phytomastigophora.

The major characteristics of taxonomic significance used in the classification of algae have been tabulated in Table 5.2.

These characteristics include the photosynthetic pigments, nature of photosynthetic reserve materials, the composition of cell wall or absence of cell wall, cellular and thallus morphology and reproductive behaviour.

Some representative genera of the different algal groups are named in Table 5.3:

The algae are polyphyletic in origin. Several independent evolutionary lines have resulted in their development. One such line evolved into the green algae which include both unicellular representatives and multicellular filamentous or parenchymatous forms.

The primitive members, like Chlamydomonas and related genera, are provided with features such as eye-spot and contractile vacuoles which are reminiscent of protozoal characters. The green algae with chlorophyll a and b are possible progenitors of green plants. The red algae represent a different line of evolution.

The absence of any motile cells in their life-cycle and presence of phycobiliproteins are unique features of the red algae. However, they share these two characters with the cyanobacteria. The brown algae, together with the diatoms and golden-brown algae seem to have originated in a separate evolutionary line. The euglenoids are closer to the flagellated protozoa, but are also related to the primitive green algae.


The CATE Project

It is inconceivable that the more radical facets of a unitary taxonomy would be acceptable to the taxonomic community, in particular its mandatory aspects, without a demonstration that the taxonomy of a significant group could be mounted at a single site. Likewise, it remains to be shown that a viable Web environment can be constructed in which taxonomy can be pursued. We also suspect that the funding for unitary taxonomies, as well as the essential commitment by major institutions, would demand proof of principle. The goals of the CATE project are to develop one-stop taxonomic Web resources for two significant (> 1000 species) groups of plants and animals, and to develop the software resources to allow new taxonomic hypotheses to be advanced within the site. In addition, it is hoped that the project will flag up any unanticipated problems and issues, as well as demonstrating to the generators and users of taxonomy the benefits of simplified access to systematic resources. Although the taxon treatments that will be mounted will be the equivalent of a first Web revision, it will of course have none of the special nomenclatural privileges of unitary taxonomies proposed above, and similarly any new taxonomic hypotheses would need to comply with the Codes as currently formulated. Yet we hope it will be a test case for the feasibility, advantages, and disadvantages of moving away from distributed taxonomies.

The project acronym stands for C reating a Taxonomic E -science and is funded by the UK's Natural Environment Research Council's E-Science Program. It is a consortium led by the Natural History Museum (NHM), London, and including the Royal Botanic Gardens, Kew (RBGK), and Oxford University. The NHM is responsible for the animal exemplar group, the Sphingidae (hawk moths, Lepidoptera) RBGK is responsible for the plant exemplar group, part of the Araceae (aroids) whereas software development is led by Oxford. The project began in early 2006 with material to be displayed on the Web as it is produced (the first substantial upload will take place in early 2007 online appendix section 11).

The two exemplar taxonomic groups were chosen to be of a feasible size to tackle with the resources available in the project, and to be groups for which a relatively mature taxonomy already existed ( Mayo et al., 1997 Kitching and Cadiou, 2000). A plant and animal group were chosen to reflect the two different International Codes and their associated taxonomic traditions. The two groups differ considerably in the kind of material normally included in a standard revision. For the Sphingidae (as for most Lepidoptera), there is not the tradition of producing dichotomous keys, and instead diagnosis and identification typically relies on a text description, illustration of wing patterns, and illustrations of male and female genitalia. In contrast, aroid taxonomy requires a text description and a dichotomous key, ideally with illustrations of flower and leaf morphology ( Mayo et al., 1997 Croat, 2004).

The Web revision for each taxon will consist of a series of “pages” for each taxonomic concept. A species page for a hawk moth will consist of a series of photographs of male and female specimens, both uppersides and undersides, and photographs of the genitalia. There will be a text description that concentrates on diagnostic features. The location and designation of type material will be described, as well as proposed synonymy. At least within the current project the distribution of the species will be given at the country/major region level using the standardized codes developed by Biodiversity Information Standards ( Brummitt et al., 2001). There will be a section on biology that will initially include, where known, food plant and phenology, and any other major feature of the taxon. We hope to supplement this data with links to external sources of data, such as the project to barcode the Sphingidae of the world (http://www.lepbarcoding.org). The species pages for the aroids will also consist of a text description and diagnosis, and illustrations where appropriate of herbarium sheets, living specimens, and drawings of diagnostic features. Information on habitat, altitudinal range, and flowering phenology will also be provided, as will proposed synonymy and the location of type specimens. All species will be keyed using interactive keys. Where necessary, the author of the species page can add comments describing the basis for his or her decisions.

The initial goal of the project is to mount a first Web revision, though this will largely reflect the current taxonomy of each group rather than incorporating new research. This taxonomy will then be available for review and revision by the hawkmoth and aroid communities and, indeed, anyone else. Changes, such as new species and synonymies, will take the form of submitted contributions in the form of pages, which will then be made available on the site for a period of review and comment. An editorial committee independent of the authors will then make the final decision as to what enters the consensus, a process akin to the standard peer review system common to all the sciences. The next edition of the Web taxonomy will include both the consensus taxonomy and all alternative hypotheses. All previous editions of the taxonomy will be archived and accessible on the Web site.

The structure of each Web site consists of an underlying database and a software application that makes the data available as Web pages. Users are, by default, directed to the consensus classification, but are able to view alternative hypotheses, proposed changes and previous Web taxonomies where they exist, aspects of the Web site that should be particularly attractive to specialist users.

Users will be able to register and propose changes to the current consensus classification. Changes could include adding new information to an existing taxon page or defining new taxonomic hypotheses. Taxonomists will be able to develop a proposal using resources available within the site, and, when complete, submit it for Web review. Before successful submission, the software will ensure that a set of minimum criteria are fulfilled for example, a new species requires a diagnosis, designation of type specimen, etc.

Once a proposal has been submitted to the Web revision, it is available for other users to review, in an open process. After a sufficient period of review, the editors will examine the submission and the reviews, and decide whether the changes should be incorporated into the consensus classification and provide an explanation of why the new taxonomic hypothesis was or was not included.

One of the goals of unitary taxonomies is to increase the engagement of the broader biological community with the taxonomic process, and to produce a biologically richer information source than is currently associated with a traditional taxonomic revision. With this aim in mind, users will be able to add information to the species page, whether it is a new image, a fact about the biology of the species, a new distributional record, or indeed anything else. These wiki-like contributions will be accessible from but not part of the formal taxon page. The information they contain may become part of the formal taxon page when it is revised, and after the normal refereeing process. If this happens then the original contribution is referenced, as one would a traditional scientific paper. As with other wikis, people can also comment on contributions.

Finally, the Web pages will link to other resources available on the Web. The common reference may be either the Linnaean binomial or the formally assigned LifeScience Identifier (LSID Clark et al., 2004) if the other resource chooses to use them. In addition to specific links made by the author of each taxonomic hypotheses, further Web resources can be identified by automated search procedures on the model of the iSpecies project (aggregating results from other resources such as search engines) or by interfacing with major biodiversity clearing houses, such as the GBIF project, as they develop. Of course, it is important to distinguish the refereed contents of the taxon Web pages from the material whose relevance to the classification presented in the unitary taxonomy is dependent on the accurate application of the Linnean name or other identifier to the data.

If successful, a unitary taxonomy site on the CATE model should help achieve the following goals. (i) To make it easier for taxonomists to do research and for their research to be more visible. (ii) To maintain the pluralistic model of current distributed taxonomy by ensuring alternative hypotheses about taxa are mounted for future examination, but with the advantage that they are accessible within a single site on the Internet. (iii) To create an enhanced product for the end-users of taxonomy through a dynamically updatable consensus taxonomy, along with the electronic means of navigating among and tracing references between different hypotheses and editions. (iv) To increase the constituency of people assisting the taxonomic enterprise by encouraging wiki-style contributions (with appropriate recognition and reference). (v) To connect taxonomy further with the broader biological community by links to other major resources and by automated search of the Web. (vi) To incorporate an online peer-review system to enhance the scientific authority of the Web site. (vii) To provide a flexible system for online revisionary taxonomy that can be customized through open-standards and protocols and rendered applicable to a diverse spread of taxa.


No funding was obtained for this manuscript.

Tilknytninger

Department of Biological Sciences, Goethe University, Institute of Ecology Evolution and Diversity, Max-von-Laue-Str. 13, 60439, Frankfurt am Main, Germany

Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany

Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan

Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands

Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand

Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany

Departamento de Micologia. Recife, Universidade Federal de Pernambuco, Centro de Biociências, Recife, 50.740-600, Brazil

Royal Botanic Gardens Victoria, Melbourne, Victoria, 3004, Australia

Illinois Natural History Survey, University of Illinois, Champaign, IL, 61820, USA

Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany

Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK

Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK

Jilin Agricultural University, Changchun, Jilin Province, 130118, People’s Republic of China

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Du kan også søge efter denne forfatter i PubMed Google Scholar

Bidrag

MT drafted the manuscript together with all other authors. The authors read and approved the final manuscript.

Kontaktforfatter


Taxonomic Categories in Order

There are seven taxonomic categories in the Linnaeus hierarchy or classification, which are as follows:

Kongerige

This is the first category of the biological classification. The kingdom is the category of closely related organisms. The kingdom is broadly classified into Plantae, Animalia, Fungi, Protista and Monera.
Eksempel : All the animals share some common features like a multicellular organization, heterotrophic mode of nutrition, and collagen in the cell wall. Therefore, the animals belong to the kingdom Animalia.

Fylde

It is the second category of the biological classification, which is a gruppe of closely related organisms.
Eksempel : Animals along with the birds, mammals will belong to the same phylum Chordata, as both share a common feature of having a spinal cord.

Klasse

The class is the third category of the biological classification, which comprises of one or more related order.
Eksempel : Like Mammalia is the class that comprises of related order like:

  • Marsupialia (includes kangaroos)
  • Cetacean (includes Whale)
  • Carnivora (includes lion, tiger etc.)
  • Primata (includes apes and human)

All these four orders, i.e. Marsupialia, Cetacean, Carnivora and Primata, share some common features like the presence of mammary gland og hår on the skin.

Bestille

The order is the fourth category of the biological classification, which comprises of one or more related families. The carnivorous animals have a common feature like small collar bone, strong senses, og strong teeth.
Eksempel : Felidae (a family that includes dog) and Canidae (a family that includes a cat, fox, wolf etc.) are placed in the same order, i.e. Carnivora (by sharing a common feature of having a carnivorous diet).

Familie

It is the fifth category of the biological classification. The family comprises a group of the related genus. Here, a term (family) indicates the organisms of the same community those have correlated characters.
Eksempel : The genus of cat is Felis, and the genus of the lion is Panthera, whereas both belong to the same family Felidae due to their hyper carnivorous behaviour.

Slægt

The sixth category of the biological classification includes some closely related species that show some similarities among the species of the same genus but differs from the other genus.
Eksempel : Mucor is the genus comprising multiple species that will somehow relate to each other but differ from the other genus like Rhizopus.

Arter

It is the last category of the biological classification. Species are highly diversified i naturen. One species can be differentiated from the other by observing differences in morphology and chemical and physical properties. Therefore, each species will show some distinctive feature that will discriminate one species from the other.
Eksempel : Bacillus is a genus that comprises species like Bacillus subtilis, og Bacillus anthracis, which cause different effects on the body.


Animal Diversity Web

In the 18th century Carolus Linnaeus revolutionized the field of natural history by introducing a formalized system of naming organisms, what we call a taxonomic nomenclature. He divided the natural world into 3 kingdoms and used five ranks: class, order, genus, species, and variety. He also introduced the system of binomial nomenclature, in which every species has an internationally recognized two-part name.

Since Linneaus’ time, other ranks have been added to the taxonomic nomenclature system. The major taxonomic ranks are Kingdom, Phylum, Class, Order, Family, Genus, Species. These ranks have been used to describe and understand major animal groups for a long time, and many people are taught about animal natural history through these traditional ranks. We grow up referring birds to “Class Aves,” snakes to “Class Reptilia,” etc.

New understanding of relationships among organisms

Scientific understanding of relationships among organisms has changed dramatically since the time of Linnaeus and classical taxonomy. Scientists now understand that major animal groups are related in ways not anticipated by classical taxonomists. So, for example, we now understand that the bird lineage (Class Aves) shares a more recent ancestor with some modern reptiles (crocodiles) than with others (snakes). Yet both snakes and crocodiles are part of Class Reptilia. Modern taxonomy seeks to represent animal groups in a system that reflects an understanding of their evolutionary relationships – so “Class” Aves comes to sit within “Class” Reptilia.

Reconciling traditional classification and new understanding

The many changes in our understanding of evolutionary relationships among animals have resulted in confusing and conflicting relationships among animal groups defined using ranks. Many scientists agree that ranks are not especially useful concepts in animal taxonomy any longer instead, they argue for a “rank free” classification system. However, ranks remain commonly used and widely recognized “placeholders” in natural history. Even the field of zoology retains a recognition of these classical ranks in the major fields of specialization: ornithology (birds), herpetology (reptiles and amphibians), etc. For this reason, we continue to display them in our classification, while at the same time acknowledging that their usefulness is limited and that they may disappear in the future.

The Animal Diversity Web strives to represent taxonomies that reflect current understanding of evolutionary relationships among animals (see nested hierarchies in the classification tab). In the interest of usability and ease of navigation for our diverse audience, we also retain certain rank labels. As a result, you may find areas of our animal taxonomy where ranks seem to be inconsistently used or contradictory. Please understand this as the unfortunate result of merging two widely used but incompatible systems of classification.